Structure Reports

Online
ISSN 1600-5368
M. Abdi, ${ }^{\text {a }}{ }^{\text {F }}$ F. Zouari, ${ }^{\text {a }}$ N. ChnibaBoudjada, ${ }^{\text {b }}$ P. Bordet ${ }^{\text {b }}$ and A. Ben Salah ${ }^{\text {a }}$
${ }^{\text {a }}$ Laboratoire de Sciences des Materiaux et d'Environnement, Faculte des Sciences de Sfax, Tunisia, and ${ }^{\mathbf{b}}$ Laboratoire de Cristallographie CNRS, BP166, 38042 Grenoble Cedex 9, France

Correspondence e-mail: abdi_monia@yahoo.fr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.029 \AA$
R factor $=0.051$
$w R$ factor $=0.132$
Data-to-parameter ratio $=24.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

(2-Phenylethyl)ammonium tetrabromothallate(III)

The structure of the title compound, $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)$ [$\left.\mathrm{TlBr}_{4}\right]$, is characterized by tetracoordinate thallium, forming a regular tetrahedron TlBr_{4} with $\mathrm{Tl}-\mathrm{Br}$ distances ranging between 2.528 (2) and 2.562 (2) A. Chains of TlBr_{4} tetrahedra oriented along the c axis form pseudo-hexagonal rings, containing two columns formed by obliquely stacked amine cations.

Comment

The title compound, (I), belongs to the system of general formula $L \mathrm{Tl} X_{4}$ (where L is an organic cation and X is Br) which form part of the compound type $L_{n} \mathrm{Tl} X_{m}$ [where L is a neutral organic ligand or organic cation, $X=\mathrm{Br}, \mathrm{Cl}$ or I , and $m=3$, 4 or 5 (Bermejo et al., 1991; James et al., 1996; Linden et al., 2003)]. Structural phase transitions and interesting physical properties have been observed and reported for these compounds (Walton, 1968; Abdi, Zouari, Chaabouni et al., 2003; Abdi, Zouari, Chaabouni \& Ben Salah, 2003). The Tl atom can be coordinated by four, five or six neighbours, leading to a variety of geometrical arrangements, such as tetrahedral, square pyramidal or trigonal bipyramidal, and octahedral (Linden et al., 1999, 2003; Abdi et al., 2004). As part of our interest in the environment of Tl in bromo complexes, we report here the structure determination of a new halo-compound, (2-phenylethyl)ammonium tetrabromothallate(III), (I).

The molecular structure of (I) is shown in Fig. 1. The asymmetric unit contains one (2-phenylethyl)ammonium cation and one $\mathrm{TlBr}_{4}{ }^{-}$anion; the latter is arranged as an almost regular tetrahedron, with $\mathrm{Tl}-\mathrm{Br}$ distances ranging from 2.528 (2) to 2.562 (2) \AA. The structural arrangement, shown in Fig. 2, is strongly one-dimensional. Tetrahedral $\mathrm{TlBr}_{4}{ }^{-}$anions form chains along the c axis. These chains are related by the 2_{1} axis and form elongated pseudo-hexagonal rings which contain two columns of the amine cations. The planar benzene rings make an angle of approximately 45° with the c axis. Due to the elongation of the pseudo-hexagonal rings, one can also consider alternating layers of the amine cations and $\mathrm{TlBr}_{4}{ }^{-}$anions being stacked along the a axis.

Received 21 October 2004
Accepted 13 December 2004 Online 8 January 2005

Experimental

Yellow-orange crystals of (I) were obtained by slow evaporation of a solution of thallium(III) oxide and 2-phenylethylamine in concentrated HBr . The reaction occurs in the presence of ethanol $(50 \mathrm{ml})$ and acetone (20 ml).

Crystal data

$\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}\right)$ [TlBr_{4}]
$M_{r}=646.18$
Orthorhombic, Pna2 $_{1}$
$a=17.944$ (1) \AA 。
$b=11.9692(6) \AA$
$c=6.9072$ (3) \AA
$V=1483.50$ (13) \AA^{3}
$Z=4$
$D_{x}=2.895 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Ag} K \alpha$ radiation
Cell parameters from 1924
reflections
$\theta=3.1-18.4^{\circ}$
$\mu=11.71 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Parallelepiped, yellow-orange
$0.52 \times 0.13 \times 0.12 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: by Gaussian integration (Coppens, 1970)
$T_{\text {min }}=0.139, T_{\text {max }}=0.288$
6988 measured reflections
3190 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.132$
$S=1.03$
3190 reflections
128 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0638 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$

Figure 1

The molecular structure of (I), showing 30% probability displacement ellipsoids.

Perspective view along the c axis, showing pseudo-hexagonal rings of chains of $\mathrm{TlBr}_{4}{ }^{-}$anions. H atoms have been omitted.

Abdi, M., Zouari, F., Chaabouni, S., Elaoud, Z. \& Ben Salah, A. (2003). Phase Transitions, 76, 723-731.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Bermejo, M. R., Castineiras, A., Fernandez, M. I. \& Gomez, M. E. (1991). Acta Cryst. C47, 1406-1408.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in SingleCrystal Structure Analysis. Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall and C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. \& Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
James, M. A., Clyburne, J. A. C., Linden, A., James, B. D., Liesegang, J. \& Zazich, V. (1996). Can. J. Chem. 74, 1490-1502.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Linden, A., Nugent, K. W., Petridis, A. \& James, B. D. (1999). Inorg. Chim. Acta, 285, 122-128.
Linden, A., Petridis, A. \& James, B. D. (2003). Helv. Chim. Acta, 86, 711-725. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Walton, R. A. (1968). Inorg. Chem. 7, 640-648.

[^0]: (C) 2005 International Union of Crystallography

